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On the relativistic dynamics of spinning matter in 
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Department of Physics, Byelorussian State University, Minsk, USSR 
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Abstract. A variational formalism is developed for conservative systems with internal 
degrees of freedom in a space-time with curvature and torsion. Lagrange’s translational 
and rotational equations of motion are obtained as well as expressions for the energy- 
momentum and spin angular momentum tensors; Noether’s identities are derived. Some 
properties of the developed formalism are studied in greater detail. 

1. Introduction 

At present, the model of so-called spinning matter (see Weyssenhoff and Raabe 1947, 
Halbwachs 1960, and also Maugin and Eringen 1972, Maugin 1974, 1978, Zhel- 
norovich 1980) is widely applied for the classical description of media possessing not 
only energy and momentum but also internal angular momentum. In a series of works 
(see the review of Hehl et af 1976), this model has been used in connection with the 
study of the influence of spin angular momentum and torsion of space-time on the 
structure of cosmological models in the frame of the Einstein-Cartan theory of 
gravitation. But it is well known that this model, for the time being, has no satisfactory 
variational formalism associated with it. 

In this work a variational formalism is given for the relativistic dynamics of a 
conservative medium with internal degrees of freedom. The following developments 
are based on results obtained by Minkevich and Sokolski (1971, 1975), where a 
variational formalism was developed for media without internal degrees of freedom 
as well as for particles with momenta. According to the gauge approach in the theory 
of gravitation, the space-time continuum possesses both a curvature and a torsion. 
The medium is described by means of the following parameters: invariant densities 
of the conservative charges qr (for example: mass, electric charge, entropy) and the 
four-velocity of the medium particle U c” satisfying the following conditions: 

2 g,”uc”uy =-c , 
* 

a,(qyc”) = $ , ( q i U c ” )  = 0 (V, = v, + 2s3 ,  
where the symbols a, and V, denote covariant derivatives, calculated by means of 
the Christoffel symbols {i”} and the total connection rku, respectively. We have 

r;y={;y}+sc”y . . A  +shlru +sf”,,, 
where SLiA = (riv - r;,) = rt,,, is the torsion tensor; the signature of the metric g,” 
equals +2 and c is the velocity of light. For the description of the internal degrees 
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1410 A VMinkevich and F Karakura 

of freedom a triad of four-vectors 1” (i is the number of the vector) is connected with 
each particle of the medium. These vectors are spatial and orthonormal in the system 
of the particle mass rest (Maugin and Eringen 1972, Minkevich and Sokolski 1975). 
That is, 

I 

g,”l”l” =sip (3) 
I 1  

g,,u ”f ” = 0, 

In connection with the choice of the above parameters in the frame of the studied 
model it is possible to consider spinning matter, and also media possessing both 
momenta connected with rotation of the particles and ‘innated’ momenta of various 
origins. 

2. The motion equations 

While describing the medium dynamics in the frame of the variational principle, the 
relations (1)-(3) play the role of constraints. To obtain the equations of translational 
motion, we shall vary the world lines of particles; the variation of other quantities in 
accordance with the conditions (1)-(3) is defined by variations in the displacement. 
It is possible to satisfy identically the conditions (1) and (2) by means of the following 
relations used by Fock (1961) for the four-velocity and the invariant charge densities: 

q & i i   FA^^, a2,  ~ 3 ~ ~ - ~ ~ y ~ a ~ ~ i a ~ o ~ a ~ i a ~ o ~ 1 ~ 2 ,  ( 5 )  
where ao, al ,  a2,  a3 are Lagrange’s coordinates of a particle, connected with Euler’s 
coordinates x ”  =f”((ao, al, U Z ,  a3), 8 = D ( x o ,  xl, x2,  x3) /D(ao,  a l ,  U Z ,  a3) is the 
Jacobian of the motion and the functions Fl (a l ,  u2,  a3)  depend on the distribution of 
densities ql. The variation in displacement of the particle is 

xLl(aO, al, a29 a3)+xW(a0, al, a29 a 3 ) + S X ” ,  

ax” =Sf”(ao, a1, a2, a3)=5”(x0,  x l ,  x 2 ,  x 3 ) ,  

SFU+ = --tAVAufi +nruu6,&, 

which, on account of (4) and (3, reduces to the following variations: 

= -eAVAql - q l n I V d A ,  

where n: = 6: +c-’u”u,. Then the variations of triad fields by virtue of (3) and (7) 
have the form 

(9) 

In a space with torsion the variations SFu” and S ~ q l  can be represented in the form 

a:“;” = -[AVA I” I + U ” l A u Y V y ~ A .  I 

= - tAVAu” +n,”u“.$v, (10) 

~ d l =  -tAVAqI -q{nXh”,  (11) 
. . A  p where e?, = V u [ ^  +2S,, 5 . 
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Note that the expression (10) for IS#” is in full agreement with the method of 
covariant variation in the relativistic dynamics of particles (Minkevich and Fedorov 
1968)t. According to the definition, the covariant variation S K  is the difference 
between the varied quantity at the point x w  +ax” and the non-varied quantity trans- 
ferred parallelly from the point x ” to the point x ” + Sx ”. The variation (10) represents 
the following difference: 

8FUl’ =6KUp-(AVAul’ .  

The application of the formula for the covariant variation SKf” (Minkevich and 

(12) 

Sokolski 1975) gives the expression 
I 

S F  (2) 1 w - - s K f “ - ( ^ v A l ”  =-eAvAI” +C-2u”(Auue!,. 

(SF’ -S:’)!+ I = nrIA(S!Yp I - 2 ~ , [ ~ ” ’ ) 6 ~ .  (13) 

~ ~ 1 ”  I = n :[,E up, 

Sri" = $7 (15) 

I I I I 

The variations (9) and (12) differ by the quantity 

However, this difference is not essential since it is a particular case of the variation 
Srl” corresponding to the triad rotation: 

I 

(14) 

where sap  = -E  *a are six arbitrary infinitesimal functions. Note that the variation 
(14), by means of the formula np” = f”$, may be represented in the form 

where E, = -E, are three independent infinitesimal parameters defining the rotation of 
the vectors I”. The variation SF is the difference at the same point of Euler’s system 
of coordinates and for the functions independent of qr, U ”  and 1” vanishes identically. 
Note that the operation SF commutes both with the particular and covariant differenti- 
ation. 

We consider the system composed of a continuous medium with internal degrees 
of freedom and non-geometric tensor fields Q,, interacting with one another and with 
the gravitational field described by the metric tensor gFu and the torsion tensor $.) 
Taking into account the principle of minimal coupling we represent the action integral 
in the form 

11 11 

I 

I 

+Note that the absolute derivative along the trajectory of the particle when passing to a continuous 
distribution of matter, corresponds to the operator uLIV,. 
$For the consideration of spinor fields it is necessary to introduce orthonormal tetrad fields h‘,  which are 
connected with the metric tensor as g,, = q l k h ’ r h k , ( q , k  =diag(-1, 1, 1 , l ) ) .  In the framework of the gauge 
theory of gravity the gravitational field is described then by means of the tetrads and the rotating Ricci 
coefficients. 
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The coefficients aBC[Y, are expressed by means of Kronecker symbols and their explicit 
form depends on the order of the tensors AB. Using (7)-(9) and varying the motion 
of the medium, applying Gauss’s theorem in covariant form and supposing that, at 
the boundary of the four-domain of integration, 6” = 0 and 6:” = 0, in conformity with 
Hamilton’s principle Splp = 0 we will find the equations of translational motion of the 
medium as 

where S/SAB = a/aAB -$,a/a(VWAB). 
The use of the variations (10)-(12) instead of formulae (7)-(9) will give 

Similarly, we will find the equations of rotational motion by varying the action integral 
(16) and using the variation (14): 

(SL/Si”)([,nil = 0 .  (19) 
I 1  

The application of the variation (15) instead of (14) gives the equations 

(SLISI”) 1 ” = 0. 
[i i l  

Due to (3), equations (19) and (20) are equivalent. Equations (17) and (18) are 
equivalent by virtue of the equations of rotational motion (19). 

3. Energy-momentum and spin angular momentum tensors 

From the invariance of the Lagrangian L there follows the relation 

f L  = 5 ” V S ,  (21) 

where S is Lie’s differential corresponding to the infinitesimal coordinate transforma- 

tion x ” + x CL +[’. Using the formulae 
L 

SAB = L A V A A B  -ABIYALhv, f g w  = 5 W ”  + 5”” = 2l(,, , ,  

where = V d A  + 2SPvA5’, we transform the relation (21) to the form 
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Taking into account the field equations SLISQ, = 0 and the equations of transla- 
tional motion (18),  we find 

i i 

On taking into account the equations of rotational motions (19)  and formula (23) ,  
the relation (22)  may be transformed to the form 

By using the formula S r i v =  V J ! V  +lPR!YPs,  where R!AFw = 2a[JP,,,+ 2 ~ f w l a 1 C l A  is 
the curvature tensor, it is easy to obtain Noether’s relations from (24) :  

L 

* 
(VvS,^ - 2 s ~ ; ~ ) t i ”  = ~ ( T ~ ~ ~ R ~ ~ ~ ~ ,  (27)  

(28)  &” = - 1 f uvAI”  
2 ”  * 

Due to the symmetry of the tensor rAY,  from (28)  it follows that 
* v, u I u A l ~  = 2&uAI (29)  

The tensors t i ”  and uryA1w are, respectively, the canonical energy-momentum and 
spin angular momentum tensors. The form of the tensors essentially depends on the 
choice of the determining parameters of media and constraints (1)-(3) (cf Maugin 
and Eringen 1972, Zhelnorovich 1980). Equations (27)  and (29)  give the laws of 
their variation. 

Varying the action integral (16)  with respect to the metric, we can obtain the 
metric energy-momentum tensor ew”. It is necessary to take into account not only 
the obvious dependence of the Lagrangian L on the metric tensor but also that due 
to (1)-(3). The variations in the four-velocity U”, the density of charges qr and the 
triad I” with respect to the metric differ from zero and are given by (Fock 1961, 
Minkevich and Sokolski 1975) 

1 

Sgu” = (2c2)-’u”u”u~Sgap, 

S I” = ; ( c - 2 u * u p  -g*’*)I%gpp. 

S g q f  = - f  q/n apSgap, 
(30)  

‘i I 

Using (30) ,  as also the formula 
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we obtain the following expression for the tensor 6”“ : 

1. (32) 

Comparing formulae (26 )  and (32 ) ,  it is easy from (28 )  to obtain the relation between 
the metric and canonical energy-momentum tensors. This has the usual form: 

(33) 

* A ( w v ) + a l + u ) A  - a ( w l A l u  - gA(”) l”  - f V , ( a  
I 

* = t w ~  + f ~ ~ ( ~ [ w A l ”  +(T[yAlw - a I ~ y I A  ). 

4. Variational formalism for Lagrangians depending on the angular velocity tensor 

Let us consider the case when the Lagrangian L depends on the derivatives of the 
four-velocity U” and the vectors I” through the tensor 

I 

aw” = [”U ‘VAl” - C-’u ‘U ‘VAU ” (a”” = -auw, n””l4” = 0) (34) 
i i 

i.e. 

L =Lt(qi ,  uw,  C”, V,qi, a””, Qa, VpQa3guw). 

The tensor nu” is the covariant generalisation of the angular velocity tensor for a 
space-time with torsion. We can use the above variational relations and, in this case, 
in addition take account of the fact that 

However, the transformation of variational relations for the concrete Lagrangians to 
the corresponding form when the derivatives V,u* and VJ’ enter through the tensor 
0”’” is too cumbersome. In connection with this problem, it is more rational to develop 
a variational formalism for the case of an action integral in the form? 

i 

To obtain the equations of translational motion we will determine the variation SFn”” 
corresponding to a variation (6) in displacement of the medium. Using (lo), (12), 
(34) and the relation 

V[,V,IAA, = &RPpwA~lPQ -S,;“V,AB, 

t The dependence of Y on the vectors f ”  besides the tensor a””, if they are present, is easy to account 
for by means of the above-mentioned considerations for L. 
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we obtain 

By virtue of (36) the equation of translational motion should be obtained in the form 

Due to (14)  and (34)  the variation &OF” corresponding to the variation in the triad 
I’ has the form 
I 

Taking (38)  into account, we find the equations of rotational motion in the form 

Noether’s relations, obtained from the requirement of invariance of the Lagrangian 
9, have the usual form (27)  and (28)  with a canonical energy-momentum tensor given 
by 

1 .  6 2  + - - ua(upfl*“ + 2upV,u ”n $ + 2u”R?,) 
c 2  SRP” 

and the tensors uAvF and are defined in the following way: 

In order to define the metric energy-momentum tensor, we use relations (30), (31)  
and (34) and find the variation: 

s g y  = [(2c2)-ln..uQu@ +(ga[C” - c - - 2 u a u [ C ” ) f p  

vA(sgmp)* + c ~ 2 u a u p ~ p u r y n C ” 1 p ] ~ g a p  + u P n  a[uns1.\ 
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Consequently, proceeding as usual, we obtain the metric energy-momentum tensor as 

By virtue of (28)  and (42)  the connection between the canonical (40) and metric (43)  
energy-momentum tensors has the usual form (33),  where the spin angular momentum 
tensor is defined according to (41).  The metric energy-momentum tensors (32)  
and (43) satisfy the equations 

= 0. 

5. Some properties of the developed formalism 

The above-developed variational formalism provides a unified description of conserva- 
tive media with internal degrees of freedom and physical fields in a space-time with 
curvature and torsion. Sometimes, the function L ( 9 )  can be represented as the sum 
of a Lagrangian for free fields L&Yf) and a material Lagrangian (with account of 
interactions) Lm(.Ym) 

(44)  

(similarly 2 = 9f +Ym). Then the relations for the medium can be expressed through 
the function L m ( S m ) .  In accordance with (44) ,  the total energy-momentum tensors 
are divided into two parts: the field one which has the usual form and the energy- 
momentum tensor of the medium. Therefore, in accordance with (25) ,  the energy- 
momentum tensor of the medium may be represented in the form 

L =Lf(Qa, VwQa, g w v )  + L ~ ( A B ,  V ~ A B ,  gp , )  

where the density of generalised momentum of the medium is given by 

SL 1 SL, 1 SZm p =m+- - - L m  U ,  +T 7 U"1V 
" Su" c2(Su" ) C S I  1 

I 

and 

N = (sLm/(&l)qf -Lm. 

Using the action integral (35)  in accordance with (40)  the canonical energy-momentum 
tensor of the medium may be written in a form similar to (45)  where this density of 
generalised momentum of the medium is 

1 
U " - Z m  U ,  +z - (U, nap + 2u a:, + 2UPV,U On Z ) .  ) c SOQP 

P ,  =- 
S2m+L(5 6u" c2 sua 

Due to the equations of translational motion (18), the energy-momentum tensor (45)  
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satisfies the equation 

m 
where urUBILI = 2(aL,/a(V,AB))AeIruP1 is the spin angular momentum tensor of the 
medium. Using the condition of invariance of L ,  written in the form 

and also the equations of rotational motion (19), one can obtain the relation 

Note that relations of the form (46) and (47) are fulfilled for the Lagrangian Lfm. 
Equations (46) and (47) represent another form of the equations of translational and 
rotational motions of the medium. 

It is easy to show that the formalism developed is in full agreement with the 
relativistic dynamics of oriented particles. To this end, let us consider the case when 
the Lagrangian does not depend on the derivatives, i.e. 

z m = s m ( q l ,  U,, (”9 a’”, Qa, g , u )  

and Lfm depends linearly and homogeneously on the densities 41. For such a Lagrangian 
N = 0 and the variational relations simplify to a great extent: 
m 
t ;” = P V U W ,  

uWVA =MGUuh = 2 ( a L Z m / a ~ u B ) n “ ” n P V ~ A ,  
m 

* 
(V,S,” -2S,P”)(P,u*) = (aSm/aQa)V,Qa - fMUBRuppAuA,  

V, (M,,u ”) = 2 ~ , [ ,  (i2?,, + c - ~ u , ] u  ,V,U “1 + 2(a2zm/al“ )If,n 
* 

i i  

The equations (48) are similar to the corresponding equations governing the relativistic 
dynamics of a particle:. As an example of the application of the proposed formalism 
let us consider a medium of the type of Cosserat’s media (SaliB 1973). Neglecting 
the dependence of the potential energy of elastic compression of the medium Jl (per 
unit of mass) on rotational degrees of freedom, we write the Lagrangian in the form 

- /l rI(/l) + +/l4RUP nap (9 = constant) (49) 
2 zm = - / l c  

where CL is the invariant mass density. As a consequence of the formula dII =pdw/p2 

t Lagrange’s relativistic function of a particle can be obtained from 2,,, by substituting for the invariant 
densities q, the corresponding constant charges of the particle. 
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were p is the invariant pressure, we can write the variational relations (48) correspond- 
ing to the Lagrangian (49) as 

P,u, =pu,  + C - ~ M , , ~ U ~ V , U ~ ,  

vW"*  = MWYU A, 
m 

M F v  = p9n"', 
m 
t a p  = ( p  +p /c2)u"up + p g m p  + C - ~ M ? , U ~ V ~ U ~ U ' + ,  (50) 

upvpna@ = (2/C2)R~[pU,]UAVAUL~ 

where the total mass density 

p = -P,u " I C 2  = p [ 1 + c -2(rI + i9naPna,,]. 
For l3 + 0 and p + 0 the equations (50) give the continuum form corresponding to the 
equations of rotating particles which are a generalisation of the known Papapetrou 
(19512 equations for the case of a space-time with torsion (Ponomariev 1973, 
Trautman 1973, Minkevich and Sokolski 1975). 
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